Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 420
Filtrar
1.
Mol Immunol ; 170: 76-87, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38640818

RESUMO

Peroxiredoxins are antioxidant proteins that detoxify peroxynitrite, hydrogen peroxide, and organic hydroperoxides, impacting various physiological processes such as immune responses, apoptosis, cellular homeostasis, and so on. In the present study, we identified and characterized peroxiredoxin 1 from Antheraea pernyi (thereafter designated as ApPrx-1) that encodes a predicted 195 amino acid residue protein with a 21.8 kDa molecular weight. Quantitative real-time PCR analysis revealed that the mRNA level of ApPrx-1 was highest in the hemocyte, fat body, and midgut. Immune-challenged larval fat bodies and hemocytes showed increased ApPrx-1 transcript. Moreover, ApPrx-1 expression was induced in hemocytes and the whole body of A. pernyi following exogenous H2O2 administration. A DNA cleavage assay performed using recombinant ApPrx-1 protein showed that rApPrx-1 protein manifests the ability to protect supercoiled DNA damage from oxidative stress. To test the rApPrx-1 protein antioxidant activity, the ability of the rApPrx-1 protein to remove H2O2 was assessed in vitro using rApPrx-1 protein and DTT, while BSA + DDT served as a control group. The results revealed that ApPrx-1 can efficiently remove H2O2 in vitro. In the loss of function analysis, we found that ApPrx-1 significantly increased the levels of H2O2 in ApPrx-1-depleted larvae compared to the control group. We also found a significantly lower survival rate in the larvae in which ApPrx-1 was knocked down. Interestingly, the antibacterial activity was significantly higher in the ApPrx-1 depleted larvae, compared to the control. Collectively, evidence strongly suggests that ApPrx-1 may regulate physiological activities and provides a reference for further studies to validate the utility of the key genes involved in reliving oxidative stress conditions and regulating the immune responses of insects.

2.
Eur Surg Res ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38636484

RESUMO

INTRODUCTION: Inadvertent thoracic duct injury is common during esophagectomy and may result in postoperative chylothorax. This study's objective is to investigate utility of patent-blue injection as a modality for intraoperative thoracic duct visualization. METHODS: A prospective, single-arm, interventional study of patients undergoing minimally invasive esophagectomy was performed. Patients were injected with patent-blue dye into both groins prior to thoracic stage of surgery and assessed for duct visualization. Control group was formed by propensity score matching using retrospectively collected data regarding patients who underwent esophagectomy. RESULTS: A total of 25 patients were included in analysis, compared to a control of 50 patients after matching. Thoracic duct was visualized in 60% of patients in the study group (15/25 patients). Significant differences were found between study and control groups(p<0.05) with regards to median operative time (422 vs. 285 minutes, respectively), overall complications (16% vs. 34%, respectively) and median postoperative length of stay (13.5 vs. 10 days, respectively). There was a difference in rate of chyle leak between study and control groups, however this was not significant (0% vs. 12%, respectively, p=0.17). CONCLUSION: Patent-blue injection represents a simple method for thoracic duct visualization during minimally invasive esophagectomy which may improve surgical outcomes.

3.
Sci Rep ; 14(1): 8079, 2024 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582926

RESUMO

With the growing resistance of pathogenic microbes to traditional drugs, biogenic silver nanoparticles (SNPs) have recently drawn attention as potent antimicrobial agents. In the present study, SNPs synthesized with the aid of orange (Citrus sinensis) peel were engineered by screening variables affecting their properties via Plackett-Burman design. Among the variables screened (temperature, pH, shaking speed, incubation time, peel extract concentration, AgNO3 concentration and extract/AgNO3 volume ratio), pH was the only variable with significant effect on SNPs synthesis. Therefore, SNPs properties could be enhanced to possess highly regular shape with zeta size of 11.44 nm and zeta potential of - 23.7 mV. SNPs purified, capped and stabilized by cloud point extraction technique were then checked for their antimicrobial activity against Bacillus cereus, Listeria innocua, Listeria monocytogenes, Staphylococcus aureus, Enterobacter cloacae, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella typhimurium and Candida albicans. The maximum antimicrobial activity of SNPs was recorded against E. coli, L. monocytogenes and C. albicans with clear zone diameter of 33.2, 31.8 and 31.7 mm, respectively. Based on minimum inhibition concentration and minimum bactericidal concentration of SNPs (300 mg/l) as well as their effect on respiratory chain dehydrogenases, cellular sugar leakage, protein leakage and lipid peroxidation of microbial cells, E. coli was the most affected. Scanning electron microscopy, protein banding and DNA fragmentation proved obvious ultrastructural and molecular alterations of E. coli treated with SNPs. Thus, biogenic SNPs with enhanced properties can be synthesized with the aid of Citrus peel; and such engineered nanoparticles can be used as potent antimicrobial drug against E. coli.


Assuntos
Anti-Infecciosos , Citrus sinensis , Citrus , Nanopartículas Metálicas , Prata/farmacologia , Prata/química , Nanopartículas Metálicas/química , Citrus/química , Escherichia coli/metabolismo , Anti-Infecciosos/química , Testes de Sensibilidade Microbiana , Citrus sinensis/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antibacterianos/farmacologia
4.
Molecules ; 29(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38542997

RESUMO

The current study aimed to evaluate the presence of chemical variations in essential oils (EOs) extracted from Artemisia scoparia growing at different altitudes and to reveal their antibacterial, mosquito larvicidal, and repellent activity. The gas chromatographic-mass spectrometric analysis of A. scoparia EOs revealed that the major compounds were capillene (9.6-31.8%), methyleugenol (0.2-26.6%), ß-myrcene (1.9-21.4%), γ-terpinene (1.5-19.4%), trans-ß-caryophyllene (0.8-12.4%), and eugenol (0.1-9.1%). The EO of A. scoparia collected from the city of Attock at low elevation was the most active against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa bacteria (minimum inhibitory concentration of 156-1250 µg/mL) and showed the best mosquito larvicidal activity (LC50, 55.3 mg/L). The EOs of A. scoparia collected from the high-altitude areas of Abbottabad and Swat were the most repellent for females of Ae. aegypti and exhibited repellency for 120 min and 165 min, respectively. The results of the study reveal that different climatic conditions and altitudes have significant effects on the chemical compositions and the biological activity of essential oils extracted from the same species.


Assuntos
Aedes , Artemisia , Repelentes de Insetos , Inseticidas , Óleos Voláteis , Sesquiterpenos Policíclicos , Scoparia , Feminino , Animais , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Repelentes de Insetos/farmacologia , Repelentes de Insetos/química , Altitude , Inseticidas/química , Antibacterianos/farmacologia , Larva , Óleos de Plantas/química
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124144, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38508073

RESUMO

Emergence of deep eutectic solvents as potential replacements for volatile organic solvents has attracted interest of the scientific community in diverse fields of applications. Compared to ionic liquids, which exhibit similarity in many respects with this new class of green solvents, deep eutectic solvents (DESs) show low toxicity, and are easy to prepare from cheap and abundantly available starting materials. Knowledge of physicochemical properties of DESs is a prerequisite for their safe applications in technological fields and to understand the nature of interactions present in these systems. Although physicochemical properties of choline chloride based DESs are widely investigated, similar information on ammonium acetate based DESs is scant. In this work, a novel ammonium acetate/propionic acid deep eutectic solvent (AA/PA DES) is reported which is prepared by mixing ammonium acetate (AA) and propionic acid (PA) in the 1:3 mol ratio and characterized by FTIR, 1H and 13C NMR, TGA and DSC techniques. The density (ρ), sound velocity (u), viscosity (η) and conductivity (κ) of the pure DES and its binary mixtures with water are investigated over the entire composition range and temperatures (298.15-353.15) K. The excess properties, VmE, KSE, Δη, and ΔG*E are calculated and corelated using Redlich-Kister equation (RKE). Temperature dependence of conductivity and viscosity is satisfactorily described by the Vogel - Fulcher - Tamman (VFT) equation rather than Arrhenius equation. The pure DES shows a wide electrochemical potential window ranging from - 1000 mV to + 1000 mV, which coupled with its better solubilizing characteristics, could be exploited for electrochemical work.

6.
Neurooncol Adv ; 6(1): vdae025, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38486856

RESUMO

Glioblastoma multiforme (GBM) is an aggressive cancer that has been difficult to treat and often requires multimodal therapy consisting of surgery, radiotherapy, and chemotherapy. Chimeric antigen receptor-expressing (CAR-T) cells have been efficacious in treating hematological malignancies, resulting in several FDA-approved therapies. CAR-T cells have been more recently studied for the treatment of GBM, with some promising preclinical and clinical results. The purpose of this literature review is to highlight the commonly targeted antigens, results of clinical trials, novel modifications, and potential solutions for challenges that exist for CAR-T cells to become more widely implemented and effective in eradicating GBM.

7.
Sci Rep ; 14(1): 6410, 2024 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-38494490

RESUMO

The present research investigates the double-chain deoxyribonucleic acid model, which is important for the transfer and retention of genetic material in biological domains. This model is composed of two lengthy uniformly elastic filaments, that stand in for a pair of polynucleotide chains of the deoxyribonucleic acid molecule joined by hydrogen bonds among the bottom combination, demonstrating the hydrogen bonds formed within the chain's base pairs. The modified extended Fan sub equation method effectively used to explain the exact travelling wave solutions for the double-chain deoxyribonucleic acid model. Compared to the earlier, now in use methods, the previously described modified extended Fan sub equation method provide more innovative, comprehensive solutions and are relatively straightforward to implement. This method transforms a non-linear partial differential equation into an ODE by using a travelling wave transformation. Additionally, the study yields both single and mixed non-degenerate Jacobi elliptic function type solutions. The complexiton, kink wave, dark or anti-bell, V, anti-Z and singular wave shapes soliton solutions are a few of the creative solutions that have been constructed utilizing modified extended Fan sub equation method that can offer details on the transversal and longitudinal moves inside the DNA helix by freely chosen parameters. Solitons propagate at a consistent rate and retain their original shape. They are widely used in nonlinear models and can be found everywhere in nature. To help in understanding the physical significance of the double-chain deoxyribonucleic acid model, several solutions are shown with graphics in the form of contour, 2D and 3D graphs using computer software Mathematica 13.2. All of the requisite constraint factors that are required for the completed solutions to exist appear to be met. Therefore, our method of strengthening symbolic computations offers a powerful and effective mathematical tool for resolving various moderate nonlinear wave problems. The findings demonstrate the system's potentially very rich precise wave forms with biological significance. The fundamentals of double-chain deoxyribonucleic acid model diffusion and processing are demonstrated by this work, which marks a substantial development in our knowledge of double-chain deoxyribonucleic acid model movements.


Assuntos
Disciplinas das Ciências Biológicas , Dinâmica não Linear , Pareamento de Bases , Ligação de Hidrogênio , DNA/química
8.
Phys Chem Chem Phys ; 26(13): 10392-10398, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38502153

RESUMO

In this article, a bromide substituted 2D layered perovskite having a repeated vertical orientation and coexisting with the bulk of a 3D perovskite is reported for the first time. This novel structure is obtained through controlled compositional engineering of the perovskite precursor solution. The photovoltaic performance of this novel 2D/3D perovskite was higher than that of 3D MAPbI3 and a maximum photoconversion efficiency (PCE) of 17.4% was achieved. The devices fabricated using this perovskite heterostructure were stable and retained their initial PCE up to 20 days when kept open in a laboratory environment with 40% relative humidity.

9.
J Med Case Rep ; 18(1): 86, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38438911

RESUMO

BACKGROUND: Peutz-Jeghers syndrome is a rare hereditary condition characterized by gastrointestinal polyps and pigmented oral lesions. The case contributes to a deeper understanding of Peutz-Jeghers syndrome and underscores the significance of interdisciplinary collaboration for accurate diagnosis and tailored therapeutic strategies. CASE DESCRIPTION: We present a case of a 15-year-old Afghan female patient with multiple polyps throughout the gastrointestinal tract and mucocutaneous pigmentation. Despite previous medical visits and colonoscopies, her symptoms persisted. A multidisciplinary team discussed the case and recommended further investigations and interventions. A polypectomy was performed, confirming the presence of hamartomatous polyps. The patient was diagnosed with Peutz-Jeghers syndrome, but during the course of treatment she went through complications and was managed surgically as well. CONCLUSION: Timely polyp removal and lifelong surveillance are crucial in managing Peutz-Jeghers syndrome. Further research and genetic analysis are needed to improve understanding and management of this rare disorder.


Assuntos
Síndrome de Peutz-Jeghers , Pólipos , Feminino , Humanos , Adolescente , Síndrome de Peutz-Jeghers/complicações , Síndrome de Peutz-Jeghers/diagnóstico , Síndrome de Peutz-Jeghers/cirurgia , Estômago , Duodeno , Intestino Grosso
10.
PLoS One ; 19(3): e0299106, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38457393

RESUMO

The primary objective of this research is to develop a mathematical model, analyze the dynamic occurrence of thermal shock and exploration of how thermal memory with moving line impact of heat transfer within biological tissues. An extended version of the Pennes equation as its foundational framework, a new fractional modelling approach called the Prabhakar fractional operator to investigate and a novel time-fractional interpretation of Fourier's law that incorporates its historical behaviour. This fractional operator has multi parameter generalized Mittag-Leffler kernel. The fractional formulation of heat flow, achieved through a generalized fractional operator with a non-singular type kernel, enables the representation of the finite propagation speed of heat waves. Furthermore, the dynamics of thermal source continually generates a linear thermal shock at predefined locations within the tissue. Introduced the appropriate set of variables to transform the governing equations into dimensionless form. Laplace transform (LT) is operated on the fractional system of equations and results are presented in series form and also expressed the solution in the form of special functions. The article derives analytical solutions for the heat transfer phenomena of both the generalized model, in the Laplace domain, and the ordinary model in the real domain, employing Laplace inverse transformation. The pertinent parameter's influence, such as α, ß, γ, a0, b0, to gain insights into the impact of the thermal memory parameter on heat transfer, is brought under consideration to reveal the interesting results with graphical representations of the findings.


Assuntos
Algoritmos , Temperatura Alta , Modelos Teóricos
11.
J Mass Spectrom ; 59(2): e5002, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38311469

RESUMO

In this study, low-energy cesium (Cs+ ) ion-induced sputtered fragmentation of poly allyl diglycol carbonate (PADC) was investigated using mass spectrometry. The collision-induced dissociation mechanism revealed emission of various fragments, including monoatomic (H- , C1 - , O1 - ), diatomic (C2 - ), and multiatomic (C3 - , CO2 - , C2 O2 - , C3 O2 - ) species within the Cs+ ion energy range of 1-5 keV. The anion current of these fragments exhibited a linear increase with rising incident Cs+ ion energy, indicating a corresponding rise in fragment abundance. Analysis of normalized yield indicated that at 1 keV incident energy, the dominant fragment was monoatomic hydrogen (H- ), followed by diatomic carbon (C2 - ), monoatomic carbon (C1 - ), and monoatomic oxygen (O1 - ). Although C2 - remained dominant up to 5 keV, other fragments exhibited varying normalized yields at different ion energy steps. The sputter yield estimation revealed that monoatomic hydrogen (H- ) and diatomic carbon (C2 - ) exhibited the highest yields, increasing exponentially beyond 3 keV, while multiatomic fragments like C3 - , CO2 - , C2 O2 - , and C3 O2 - displayed the lowest yields. The sputter dissociation mechanism pointed to dehydrogenation, chain scission, and bond breakage as the primary processes during low-energy Cs+ ion impact. Postsputtering Scanning Electron Mircoscope (SEM) micrographs show craters, pits, and micropores on the PADC surface, indicating significant surface degradation. X-ray Diffraction (XRD) spectra exhibited reduced diffraction intensity, while Fourier Transform Infrared Spectroscopy (FTIR) analysis indicated the absence of molecular bands in the IR spectrum, confirming extensive surface damage due to Cs+ ion-induced sputtering.

12.
J Colloid Interface Sci ; 662: 250-262, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38350348

RESUMO

Tetracycline (TC) antibiotics and dyes are the prevalent water contaminants, and their removal from the water through photocatalysis is a plausible approach. However, most semiconductors in their pristine form need to be improved to be exploited in photocatalysis owing to poor photoresponse, intense carrier recombination, and inertness without irradiation. Herein, we demonstrate the modification of defective WO3-x by rGO and AgBiS2 in the form of WO3-x/rGO/AgBiS2 (R2). It exploits the superior conductivity and synergism of rGO to inhibit carrier recombination; thereby, Z-scheme heterojunction with AgBiS2 provides high redox potential. Defects in WO3-x enable electron (e-) storage in R2, which decomposes H2O2 to generate ROS without irradiation. Owing to these essences and broad-spectrum response, it removed 93.72, 82.77, and 84.82% of TC during photo-Fenton (PFR), night-Fenton (NFR), and photocatalytic (PCR) reactions, respectively. Its removal rates reached 94.74, 81.54, and 87.50% against rhodamine B (RhB) during PFR, NFR, and PCR, respectively. It is superior to memory catalysis (MC) and conventional Fenton reactions (CFR) because it can perform without and with irradiation across a broader pH range. So, this work is conducive to designing WO3-x-based catalysts to combat environmental and energy crises.

13.
Microorganisms ; 12(2)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38399680

RESUMO

Improving the soil structure and fertility of saline-alkali land is a major issue in establishing a sustainable agro-ecosystem. To explore the potential of different straw returning in improving saline-alkaline land, we utilized native saline-alkaline soil (SCK), wheat straw-returned saline-alkaline soil (SXM) and rapeseed straw-returned saline-alkaline soil (SYC) as our research objects. Soil physicochemical properties, fungal community structure and diversity of saline-alkaline soils were investigated in different treatments at 0-10 cm, 10-20 cm and 20-30 cm soil depths. The results showed that SXM and SYC reduced soil pH and total salinity but increased soil organic matter, alkali-hydrolyzable nitrogen, available phosphorus, total potassium, etc., and the enhancement effect of SYC was more significant. The total salinity of the 0-10 cm SCK soil layer was much higher than that of the 10-30 cm soil layers. Fungal diversity and abundance were similar in different soil layers in the same treatment. SXM and SYC soil had higher fungal diversity and abundance than SCK. At the genus level, Plectosphaerella, Mortierella and Ascomycota were the dominant groups of fungal communities in SXM and SYC. The fungal diversity and abundance in SXM and SYC soils were higher than in SCK soils. Correlation network analysis of fungal communities with environmental factors showed that organic matter, alkali-hydrolyzable nitrogen and available phosphorus were the main environmental factors for the structural composition of fungal communities of Mortierella, Typhula, Wickerhamomyces, Trichosporon and Candida. In summary, straw returning to the field played an effective role in improving saline-alkaline land, improving soil fertility, affecting the structure and diversity of the fungal community and changing the interactions between microorganisms.

14.
Dalton Trans ; 53(8): 3445-3453, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38247309

RESUMO

Rare-earth (RE) metal-organic frameworks (MOFs) offer unique optical, electronic, and magnetic properties. RE metals tend to make binuclear metal nodes resulting in dense nonporous coordination networks. Three dimensional porous RE-MOFs have been reported by preparing bigger metal nodes based on metal clusters often found as hexaclusters or nonaclusters. The formation of metal clusters (>2 metal ions) generally requires the use of fluorinated organic molecules reported as modulators. However, it was recently discovered that these molecules are not modulators, rather they act as reactants and leave fluorine in the metal clusters. The formation and types of fluorinated RE metal clusters have been discussed. These fluorinated clusters offer higher connectivity which results in porous MOFs. The presence of fluorine in these metal clusters offers unique properties, such as higher thermal stability and improved fluorescence. This frontier summarizes recent progress and gives future perspective on the fluorinated metal clusters in the RE-MOFs.

15.
PLoS One ; 19(1): e0296640, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38295047

RESUMO

The aim of the present study is to identify multiple soliton solutions to the nonlinear coupled Broer-Kaup-Kupershmidt (BKK) system, including beta, conformable, local-fractional, and M-truncated derivatives. The coupled Broer-Kaup-Kupershmidt system is employed for modelling nonlinear wave evolution in mathematical models of fluid dynamics, plasmic, optical, dispersive, and nonlinear long-gravity waves. The travelling wave solutions to the above model are found using the Unified and generalised Bernoulli sub-ODE techniques. By modifying certain parameter values, we may create bright soliton, squeezed bell-shaped wave, expanded v-shaped soliton, W-shaped wave, singular soliton, and periodic solutions. The four distinct kinds of derivatives are compared quite effectively using 2D line graphs. Also, contour plots and 3D graphics are given by using Mathematica 10. Lastly, any pair of propagating wave solutions has symmetrical geometrical forms.


Assuntos
Lesões Acidentais , Humanos , Gravitação , Hidrodinâmica , Sorogrupo , Viagem
16.
Adv Mater ; 36(5): e2308522, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37922408

RESUMO

Antimony triselenide (Sb2 Se3 ) has possessed excellent optoelectronic properties and has gained interest as a light-harvesting material for photovoltaic technology over the past several years. However, the severe interfacial and bulk recombination obviously contribute to significant carrier transport loss thus leading to the deterioration of power conversion efficiency (PCE). In this work, buried interface and heterojunction engineering are synergistically employed to regulate the film growth kinetic and optimize the band alignment. Through this approach, the orientation of the precursor films is successfully controlled, promoting the preferred orientational growth of the (hk1) of the Sb2 Se3 films. Besides, interfacial trap-assisted nonradiative recombination loss and heterojunction band alignment are successfully minimized and optimized. As a result, the champion device presents a PCE of 9.24% with short-circuit density (JSC ) and fill factor (FF) of 29.47 mA cm-2 and 63.65%, respectively, representing the highest efficiency in sputtered-derived Sb2 Se3 solar cells. This work provides an insightful prescription for fabricating high-quality Sb2 Se3 thin film and enhancing the performance of Sb2 Se3 solar cells.

17.
Int J Biol Macromol ; 256(Pt 2): 128515, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38040165

RESUMO

The GATA family of genes plays various roles in crucial biological processes, such as development, cell differentiation, and disease progression. However, the roles of GATA in insects have not been thoroughly explored. In this study, a genome-wide characterization of the GATA gene family in the silkworm, Bombyx mori, was conducted, revealing lineage-specific expression profiles. Notably, GATA6 is ubiquitously expressed across various developmental stages and tissues, with predominant expression in the midgut, ovaries, and Malpighian tubules. Overexpression of GATA6 inhibits cell growth and promotes apoptosis, whereas, in contrast, knockdown of PARP mitigates the apoptotic effects driven by GATA6 overexpression. Co-immunoprecipitation (co-IP) has demonstrated that GATA6 can interact with Poly (ADP-ribose) polymerase (PARP), suggesting that GATA6 may induce cell apoptosis by activating the enzyme's activity. These findings reveal a dynamic and regulatory relationship between GATA6 and PARP, suggesting a potential role for GATA6 as a key regulator in apoptosis through its interaction with PARP. This research deepens the understanding of the diverse roles of the GATA family in insects, shedding light on new avenues for studies in sericulture and pest management.


Assuntos
Bombyx , Poli(ADP-Ribose) Polimerases , Animais , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Bombyx/metabolismo , Ribose/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerase-1/genética , Apoptose
18.
Int J Biol Macromol ; 256(Pt 2): 128410, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38029918

RESUMO

Peroxiredoxins have been shown to protect insects from oxidative damage and to play a role in the immune system. In the present study, we cloned and characterized the Antheraea pernyi peroxiredoxin 2 (ApPrx-2) gene, then assessed its functional roles. The ApPrx-2 gene has a 687 bp open reading frame that encodes a protein with 288 amino acid residues. Quantitative real-time PCR analysis revealed that the mRNA levels of ApPrx-2 were highest in the hemocytes. Immune challenge assay revealed that ApPrx-2 transcription could be induced after microbial challenge. A DNA cleavage assay employing recombinant ApPrx-2 protein and a metal-catalyzed oxidation system showed that rApPrx-2 protein could protect supercoiled DNA against oxidative stress. The protein antioxidant activity of rApPrx-2 was examined, and it was found that rApPrx-2 exhibited a high level of antioxidant activity by removing H2O2. In addition, ApPrx-2 knockdown larvae had higher H2O2 levels and a lower survival rate when compared to controls. Interestingly, the antibacterial activity was significantly higher in ApPrx-2 depleted larvae compared with control. Overall, our findings indicate that ApPrx-2 may be involved in a range of physiological functions of A. pernyi, as it protects supercoiled DNA from oxidative stress and regulates antibacterial activity.


Assuntos
Mariposas , Peroxirredoxinas , Animais , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Sequência de Aminoácidos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , DNA Super-Helicoidal/metabolismo , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Mariposas/genética , Larva/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Dano ao DNA , Antibacterianos/metabolismo , Imunidade , Filogenia , Clonagem Molecular
19.
Inorg Chem ; 63(1): 219-228, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38150361

RESUMO

Two fluoro-bridged lanthanide-containing metal-organic frameworks (MOFs) were synthesized using 2,2'-bipyridine-4,4'-dicarboxylic acid (BPDC), a fluorinated modulator, and a lanthanide nitrate. The syntheses of MOFs containing Gd3+ or Tb3+ and a closely related MOF structure containing Ho3+, Gd3+, or Tb3+ are presented. The presence of the fluorinated metal chains in these MOFs is shown through single crystal X-ray diffraction, energy dispersion X-ray spectroscopy, 19F nuclear magnetic resonance, and X-ray photoelectron spectroscopy. Magnetic measurements reveal weak antiferromagnetic exchange between the Ln3+ ions mediated by fluoride anions along the zigzag ladder chains present in the crystal structures of these MOFs.

20.
Arthrosc Sports Med Rehabil ; 5(6): 100822, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38058769

RESUMO

Purpose: To compare 3 separate blood flow restriction (BFR) systems in their capacity to reduce repetitions to failure, impact perceptual responses, and cause adverse events during a low-load free-flow exercise. Methods: The study included healthy subjects aged 18 years or older who presented to an ambulatory-care sports medicine clinic. On day 1, participants' demographic characteristics and anthropomorphic measurements were recorded. Each participant performed dumbbell biceps curl repetitions to failure using 20% of his or her 1-repetition maximum weight with each arm. Participants were exposed to 3 different tourniquet systems for familiarization. On day 2, each participant's arm was randomized to a cuff system, and the participant performed 2 sets of biceps curl repetitions to failure with the cuff inflated. Repetitions to failure, rating of perceived effort (RPE), rating of perceived discomfort, and pulse oxygenation levels were recorded after each set. On day 3, participants completed a survey of their perceived delayed-onset muscle soreness. Results: The final analysis was performed on 42 arms, with 14 limbs per system. The study population had a mean age of 28.7 ± 2.4 years and a mean body mass index of 24.9 ± 4.3. All 3 systems successfully reduced repetitions to failure compared with unrestricted low-load exercise from baseline to BFR set 1 and from baseline to BFR set 2. There were no significant between-group differences among BFR systems regarding the number of repetitions to failure performed at baseline versus BFR set 1 or BFR set 2. The Delfi Personalized Tourniquet System (PTS) cohort had the greatest reductions in repetitions to failure from BFR set 1 to BFR set 2 (P = .002) and reported the highest RPE after set 2 (P = .025). Conclusions: The Delfi PTS, SmartCuffs Pro, and BStrong BFR systems were each safe and were able to significantly reduce repetitions to failure compared with a low-load free-flow condition when used in a BFR exercise protocol. The Delfi PTS system may produce a higher RPE with prolonged use in comparison to the other systems. Level of Evidence: Level II, prospective cohort study.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...